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. A deeply buried anchor rod under the action of a time-harmonic lateral force

<oACT:
gﬁﬂ‘u 1nventiglt10ﬂ-_d?n m:iielling the embedding full-space as an elastic medium
i{s und anchor as a one mensional structure, the problem is formulated as a Fredholm
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n is concerned with the
the dynamic compliance
y puried anchor rod of finite
er the action of a dynamic

1gteral force acting at the mid—-segment.

the problem is of some relevance to the
ign of soil and rock anchors,

seismic des
interaction analysis of

1igeal buried structures such as tunnels
and pipelines, as well as the dynamic

serformance of a variety of structural

and nonstructural components in build-
ings during earthquakes. It also serves
well as a pilot study to the more
complicated, but closely-related, problem
of a pile under dynamic lateral
excitations.

1 PROBLEM STATEMENT

The problem under investigation is
depicted in Figure 1. A rod of length L
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n of the second kind. Selected results a
re presented
teristics of the system compliance. P nted to illustrate

and radius a is fully embedded in an
infinite space. A time-harmonic lateral
force F; of frequency w is exerted on the
anchor at its mid-segment. On adoption
of the approach employed by Muki and
Sternberg (1969) for a class of load-
transfer problems, the present problem
can be reduced to the analysis of an
extended full-space S and its fictitious
reinforcement Bx in the rod region D
(see Figure 2). The reinforcement Bx

is chosen such that the flexural and
inertial properties of region D is the
same as the actual rod B. To this end,
Bx is assigned a Young's modulus of Ex =
E. - Eg and a mass density of px = pr ~
where the subscripts r and s denote

the corresponding quantities of the rod

(b) FICTITIOUS REINFORCEMENT B,

Figure 2: Problem Decomposition




110w for the possibility ¢ di;
T ad-transfers such as thoge
lo (111) in order to

and
(;izistent formulation has p.,. 2in
:n detail 1n Muki and Sternbﬂ;

and will not be repeated herg 8y
» )

o for B oY FORCE : {

p Figure 3: peam Theory * . FEMLE-%.'RCE_HH = }
iR Al 1V e T S
% # res Pective y a- 'fs{ % * 3

| ’ - de f orm ! OPEN

um,
and the embedding medi mode of

imary is
Since flexure 18 o loading, Bx - ~
pecified _guler beam o 2 i

i
he Bernoull g
{mation. Accor FULL - SPACE

tion under the 8
assumed to obey t

f{irst approx t
::;;};T :;t: I S facrorbr{':j’ft)}’: the s DEfin%tiOE ST 1o
guppressed from hereon for ra fUTﬂlthflzi (EaS) =lcg
governing equations for Bx a
> (1) By the law of action ang feacti,,
Exl —p— = M % ’ forces that are equal and OPPOS]te
dz those in (i) and (ii) wily e acte to
S, in addition to the direct lgading on
o dM A A (2) transfer of (FO -F%) that s -
| -5;— z=0. For the description of theat
| of the extended medium to g aboresponsa_
dVx S (3) forces, it is convenient to firs;ve
P = = oy wpxA ux determine an influence function y
which gives the displacement fieid(ff)
dll

elastic full-space due to g Cime-haprman.:
body-force field of unit resultant iﬁ?mc
acts in the xj-direction. For thig .

where the notation and sign conventions
are shown in Figure 3. Since the motion
of Bx depends on the external forces it
ls subjected to, it is appropriate at

this point to first clarify the
interaction forces that are considered in

to be uniformly distributed over a disk
lip which corresponds to the

:iﬁfs; be;weelr:iB* and the extended cross—sectional region of the rod (g
. O this end, the forces that are Figure 5) W 5
acti « With the aid of th
Theynfg:::i:: :;‘e(f;lown in Figure 4. influence field, the response 0? the
force px (z) per unit:a fiit:;bmef e e irwmpace to the interaction
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the shaft of B, (11) the egnd sﬁ:a:g £ S Vel ac i
force Va at z = 4+ L/2 -
U(x)=Vx(L/2) u(x, L/2)-Va(-L/2) u(x,-L)
+ (Fy-Fx) u(x,0) (4)
L/2
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Cozoa:;lsure the motion of By and S are

muss b il suitable bond condition

require lmposed. To this end, the

displa:ment 1s adopted that the

of 23 ément usx of By be equal to U]
© Medium S along the X4 —axis for

ful
: length of the anchor, i.e.,
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-f{{ﬁiﬁr the soil-structure
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K(z,8) M(s)ds = F(2) (10)
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K(z.8) = LY = g Y
(z,8) = (z,8) - RS [G(z,s) + -
L/2
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g2 = 2 a; ;ri a/a;_'L = L/a, ; = ux/a,

Here, g, Ve 80d C5 are the shear
r.ngéuiﬁsf?th: Pbissan?sjtttiauLamd'thﬂ__.
hear wave speed of the embedding medium,

b Bl b 1



t12)

Jy(w £)dE

I,(d) = s
g é 1/2

(£%-1)

Ji(w E)dE ,
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The above integrals can be evaluated in
closed form:
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into a set of linear algebraice
which can then be solved on , ,, Uati,

computer. Since the influence ;Eita% :
and thus the various COEfficiel‘ltS Ct1,
fatugral squatlion can be COmputeq zi Chg
great economy and accuracy, the - th
simple method such as q“adratuuiw.gfa
finer discretization is Preferreg tth
sophisticated schemes which nay 31107 oy,
coarser spacings to achievye the Sam?
level of accuracy. To this end, ,
computer code is developed fgqr the
solution of the integral equat {
basis of the trapezoidal ryje with

variable spacings.

With the aid of the computer code, the
solution to the soil-structure
interaction problem can be computed a4
selected results are presented ip Fi gureg
(6) to (8) to illustrate the basic
characteristics of the solution. Since
the response is in general out-of—phage
with respect to the excitation, the
response quantities are represented in
complex notation, with the real and the
imaginary parts denoting the in-phase an
the 90 deg out-of-phase components,
respectively. From Figure 6, it can be
easily seen that the maximum moment
always occurs at the point of loading.
As expected, the displacement at the
point of 1load application increases whil
the bending moment decreases as the
modulus rato E = E /E decreases. The
variation of the rgspgnse u at z=0,
commonly called the compliance of the
anchor System, as a function of the ;
dimensionless frequency w 1is i1lustrate
in Figure 8. As is evident from the
figure, there is a strong dependence’
the System response on excitation .
KESquencys  With the exception of g5
quantitative differences, the bf‘-havi?z
of the 8alution at different Poissor re
;‘?tio Vg» mass ratio p,—and lengths °
milar ang hence, for the sake of

Will not be pursued here:
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